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Two-Dimensional Hypersingular Integrals
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Abstract

We define and examine two-dimensional hypersingular integrals on [0,1)? and on
[0,00)? and relate their Hadamard finite-part (HFP) values to Mellin transforms. The
integrands have algebraic singularities of a possibly unintegrable nature on the axes and
at the origin. Extending our work on one-dimensional integrals reported in 1998, we
obtain variants of the classical Euler-Maclaurin expansion for various two-dimensional
integrals. In many cases, the constant term in the expansion (which is not necessarily
the leading term) provides the value of the HFP integral. These expansions may be used
as the basis for the numerical evaluation of a class of HFP integrals by extrapolation.

1 Background

This paper treats a part of numerical cubature concerned with formulas that can be used
to evaluate a two-dimensional Hadamard finite-part integral numerically by using extrapo-
lation.

In a previous paper [MolLy98] we derived a generalization of the one-dimensional Euler-
Maclaurin expansion for hypersingular integrals. The singularity, which occurs at an end-
point of the integration interval, need not be integrable in the conventional sense. It is
interpreted as a Hadamard finite-part integral (see [Ha52],[M094]), and in many cases the
constant term in the Fuler-Maclaurin expansion coincides with this integral. Some of the
results in that paper are listed in subsection 1.2.

In this paper, corresponding results are derived in a two-dimensional context. We treat
the quadrant [0, 00)? and the square [0, 1)? with an integrand having a full corner singularity,
that is, one that, in the unit square, takes the form

f($17$2) :$?1$g2r1)($17$2)7 (11)
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where 7, is homogeneous of degree p (see (2.25)) and has no singularity in [0, 1] other than
at (0,0).

We note that in the hypersingular case we may have a; + as + p < =2 and o; <
—1. (These parameter values are conventionally excluded because they lead to divergent
integrals.) We also note that any expansion for f of this form is readily adapted to one for
fg, where ¢ is a regular function, by means of its Taylor expansion about the origin; this
process is treated in detail in section xx5xx below. Several expansions for two-dimensional
regular integrals on which extrapolation is based are mentioned briefly below. The purpose
of the rest of this paper is to generalize some of these expansions to include two-dimensional
hypersingular integrals.

One classical approach to cubature for regular integrals over a square is based on extrap-
olation. Let @ be any standard cubature rule over [0,1)2, and denote its m-copy version
by Q™). When f(z,y) is Riemann integrable, QU f is a discretization of If, the integral
over [0,1)2, and If is the limit of Q™) f as m becomes infinite.

In some cases one may write Q") f as an expansion in m. For example, when f is
C'(p)[O7 o0)?,we have the classical Euler-Maclaurin expansion

p—1

QUM =1f+>By/m*+ Ry, (1.2)

s=1

where By is independent of m and R, = O(m™"). This particular result is a two-dimensional
version of the classical Euler-Maclaurin expansion, which is usually asymptotic.

When f(z) is simply a homogeneous function r,(z1, 23) of degree p having no singularity
in [0, 1] other than at (0,0), a different expansion (see [Ly76]) is valid, namely,

p—1
QU f=1If+ Apya/m 2+ By/m* + R, (1.3)

s=1

In this case, as in (1.2), simple integral representations for the coefficients By and C and
for the remainder terms are known [Ly76].
The extension of this result to the full corner singularity [LydD93] produced an expansion

that included terms of the form AEz]‘FOZi
integral representations for the coeflicients are not available.

The derivation of these expansions was not easy, and a separate long and detailed proof
is required for each ([Ly76],[Si83],[LydD93]).

In 1993 Verlinden ([Ve93],[VeHa93]) introduced a new uniform approach, based on Mellin
transforms, for constructing these expansions. He treated the s-dimensional region [0, c0)*
and all s-dimensional monomial versions of our full corner singularity. He established that
many expansions of this nature exist. While complicated in detail, his method deals with
all these different cases uniformly. The differences arise in a technical way and depend on
the nature of the poles of an integrand function that depends, in turn, on the values of the
parameters. In general, his treatment was limited to cases where the integral is regular. We
have followed his approach, but in the context of hypersingular integrals.

m~""% with positive integer n. In general, simple



1.1 Outline

In this paper, we approach the problem of divergent integrals from the following viewpoint.
Suppose the parameters in (1.1) are such that f(z,y) is a function for which the integral
over [0,1)? diverges. Then, while the quadrature rule sum Q™) f exists for any finite m,
it becomes unbounded with increasing m. In this paper, we show that, in many of these
cases, there is still an expansion that (not unlike the Laurent expansion) starts with a few
isolated terms involving positive powers of m and then continues with the familiar negative
powers. In some cases (later defined as generic cases) the constant coefficient (which here
is not the leading coefficient) coincides with the value of the Hadamard finite-part integral.

We organize this paper as follows. In section xx1.2xx we collect some of the results of
our previous one-dimensional investigation. In sections xx2.1xx and xx2.2xx we define two-
dimensional Mellin transforms and Hadamard finite-part (HFP) integrals and note some of
their elementary properties, including the connection between them.

In general, the approach based on the Mellin transform requires an integration region
[0,00)% An integrand such as the basic full corner singularity specified in (1.1) does not
converge over this region. We deal with this difficulty in section xx2xx, where we define
allowable and acceptable functions and introduce neutralizer functions to mitigate the decay
rate for large z;. In section xx2.4xx, we present information about poles and residues of
some Mellin transforms.

In section xx3xx, we substitute the expression for f given by the two-dimensional Mellin
inversion formula (2.2) into the expression for the trapezoidal rule (3.1). This gives the basic
relation on which the entire theory is based. This is a contour integral representation (3.3)
of the trapezoidal rule, which can be developed into an expansion by moving contours to
the left and including residues of poles that are passed over. These residues depend on m
and on the parameters a1, ap and p. For many sets of parameters, all poles are simple; these
are termed generic cases; see definition 3.1 and theorem 4.1. In section xx4xx, we confine
ourselves to these cases. Our principal result is theorem 4.2, which gives the expansion for
f, the pure full corner singularity over [0,00)% The extension to fg where g is a regular
function is effected in section xx5xx, where the form of the expansions for [0,00)? and for
[0,1)? is given in theorem 5.1 for generic integrands. The expansions for [0, 1)? are obtained
by taking sums and differences of corresponding integrals over appropriate infinite regions
(see (5.4)); in these, neutralizer functions do not appear. In section xx6xx we treat in
more detail some special cases of the full corner singularity, such as those with «; = 0 or
with 7, = 1. We are able to simplify the integral representations of the coefficients; in fact,
some of these turn out to be HEFP integrals, in some cases even when the original integral
is regular. A straightforward way of obtaining the form of the expansion for nongeneric
integrands is explained in section xx7xXx.

We have noted that many rules may be used as a basis for extrapolation. Most of these
rules, however, may be expressed as linear combinations of the offset trapezoidal rule

m—1m

S™ (B, B2) f :%Z Z_: (‘h—l_ﬁl ]2+ﬂ2), (1.4)

m

with different parameters 3y, 32. Thus, once an expansion for the offset trapezoidal rule
(1.4) is available, the corresponding expansion for Q™ f is readily obtained by linear su-



perposition. In this paper we simply seek expansions for this offset trapezoidal rule.

1.2 One-Dimensional Extrapolation for HFP Integrals

Central to the one-dimensional theory treated in our earlier paper [MoLy98] is the Mellin
transform of a function f(z) together with the standard inversion formula. These are defined

by

00 c+i00

M (f(x);p) = M(f;p) = /0 fl@)a?™de;  f(z) = %/ _ M(fip)ardp. (1.5)
The path of integration in the second integral is Re(p) = ¢, and ¢ may take any real value
p for which the left-hand integral exists. In the many cases in which no confusion is likely
to arise, we use the abbreviation M (f;p). This is analytic in p and is generally defined by
analytic continuation from regions where the integral representation is valid.

In [MoLy98] we considered only functions f(z) = 2%g(z), where g(z) € C("+D[0, c0)
has a decay rate at infinity exceeding that of any inverse power of z; that is,

/Oo g (2)2d da
0

for all j > 0. The functions g(z) were termed “allowable” in C("+t1[0,00) . For these
functions we established theorem 1.1, which specifies the simple poles of M(f;p).

Applying the conventional definition of the HFP integral (a one-dimensional version of
definition 2.2 below), we established that

<oo, w£=0,1,....m+1,

ﬁ?@m=Mmm

in all cases in which f = ga® and g is allowable and M (f, p) has no singularity at p = 1.
This permitted us to derive several properties of the HFP integral by developing the (more
robust and better established) Mellin transform.

When M (f;p) has no poles in Re(p) > 0, the analytic continuation of M(f;p) into
Re(p) > —m — 1, excluding the nonpositive integers, may be represented by

M(fip) = ]%mf(x)xp_ldw N plp+ 1()_1)

ST /0 £ (@) 2P+ de (1.6)
for all integers ¢z for which the final integral exists.

Theorem 1.1 When f(z) = 2%g(z) and g(z) is an allowable function in C(*)[0,00), the
analytic continuation M ( f;p) of the Mellin transform of f(z) has simple poles at p = —a—n,
n=0,1,2,3,..., and

(n) n! e
Mgy —a-ntg = O Lot (1.7

—I—e]% g(z)(logz)z™""tdz 4+ O(€?).



Using the standard Riemann zeta function expansion

o0

C(p,a) = Z(x—l— k)=?, z € (0,1], p>1, (1.8)

k=0

together with the Mellin inversion theorem (second member of (1.5)), we derived a contour
integral representation for the trapezoidal rule sum approximation

S™(8)f = %i F(EE8). (1.9)

m
This is the expression on the left-hand side of (1.10). Applying (1.7), we established the
following (asymptotic) expansion.

Theorem 1.2 Let f(z) = 2%g(z), let g(x) be allowable in CNFTV[0,00), and let o not be

a negative integer. Then,

c+i00 N (n) _mn —
| Aﬂmmmmw*@=:an+g¥n@“4Lﬁf)<Mm

270 Je—ico

c' 4100
+ij) M(f;p)C(p, B)mP=tdp,

271 Jol—ioo

where N is a nonnegative integer, ¢ > a— 1, € (=N —a—2,—N —a — 1), and M(f;p)
is the (analytic continuation of the) Mellin transform of f(x) (in the p-plane).

Since the first term on the right is an HFP integral, this expansion is a minor generalization
of the classical Euler-Maclaurin asymptotic expansion. We note that this HFP integral is
the constant term in an expansion that may contain terms of both higher and lower order.

Remark 1.1 When « is a negative integer, a variant of this theorem pertains. The
term in the summation having n = —«a — 1 is indeterminate as written. This term and with
M (f;1) must be replaced by a pair of terms of the form Cylogm + Dy. Details are given
in [MoLy98]. We note that the same phenomenon, in a more complicated setting, occurs
in the two-dimensional case. We refer to the cases covered by the theorem as generic cases
and the cases with negative integer o as nongeneric cases.

2 The Two-Dimensional Mellin Transform

2.1 General Definitions and Properties

We define a double Mellin transform of f(z1,23) in a natural way. For values of p; and p,
for which the integral exists, we define

M, (f(z,y)ip1,p2) = M(f;p1,p2) / / (@1, 29)a)*” ! ah?” Yda dz,. (2.1)

For other values of p; and p,, the transform may be defined by using analytic continuation.
A double application of the one-dimensional inversion formula (1.5) gives the corresponding
two-dimensional inversion formula, namely,

c1tico pegtico _
f(z1,29) = 2m / / M(f;p1,p2)ay ™ 2y dpidp;. (2.2)

1—100 Jco—100



Here ¢y and ¢ may take any real values of p; and py, respectively, for which the double
integral in (2.1) above exists.

We shall apply the Mellin transform only to functions that are acceptable according to
the following straightforward generalization of the one-dimensional definition.

Deﬁnition 2.1 A function g(z1,x2) is an allowable function in C'(”)([O7 )%, n > 0, when
it is a C™ function in both variables and

|/ / (21, wg) el deyday| < 0o (2.3)

Jor all integers 0<e, j<n, all k,1 > 0.
An acceptable function is one of the form g(x1,x9)z{ 25 where g is allowable.

When g is allowable, it is a simple matter to obtain a set of real integral representations
for the Mellin transform, valid for all real noninteger p; and p,. We start with the definition
(2.1), assigning values of p; and py sufficiently large that the integral exists. Then we carry
out the process of integration by parts, ¢ times in the z; variable and j times in the 2,
variable. The contributions from the lower limits contain factors of the form x¢ with § > 0
and so vanish; the decay rate of an allowable function ensures that the contributions from
the upper limits vanish also. We are left with the following generalization of (1.6):

M(g; p1,p2) = (2.4)
—1)its
. (=1 / / 01) (21, 22) $11+Z 1$p2+] Ydz dz,.
pipm+1)...(p+e—Upa(pe+1)...(p2+35—-1) 25)
2.5

The derivation of this relation is valid only for values of p; for which integral represen-
tation (2.1) exists. But the right-hand side exists for a wider range of p; and is analytic in
p;. An elementary application of the principle of analytic continuation produces the result

(=1 (pr = Dl(pz — 1)!
(pr+i=1Dp2+J - D!
valid for all allowable functions ¢, with all noninteger values of p;.

We close this subsection with some standard rules for manipulating the two-dimensional
Mellin transform.

M (g; p1,p2) = M (g py 44, p2 + ), (2.6)

Lemma 2.1 Let f, ¢, and h be functions of two variables, and let p; and py be parameters
such that the Mellin transform functions below exist. Then we have the following:

(a) When ¢(y1,y2) = f(y1y2, y2),
Moy (f(2,9); 1, p2) = My (62, y); p1, p1 4 p2)-
(b) When ¢(z1,22) = 2] 23*h(z1, 22),
My (0(2,y); p1y p2) = Moy (h(z,y); P14+ 71, P2 + 72)-
(¢) When f(z,y) = g(x)h(y),
My (f (2, y); p1yp2) = Mi(g(t); pr) My (h(1); p2)

(Bear in mind that z,y,t are dummy variables that may be renamed at will.) These
textbook results are direct consequences of the definitions.



2.2 Definition of HFP Integral and Relation with the Mellin Transform

We now define a two-dimensional HFP integral and show that, in many circumstances, it
coincides with M (f;1,1).

Definition 2.2 Let f be integrable over (e,b)?, for all € satisfying 0 < € < b < co. Suppose
there exists a strictly monotonic increasing sequence of nonpositive real numbers cg < o <
g < ... < apr <0 and a nonnegative integer J such that an expansion of the form

b b M J ]
/ / fla1,29)darday = szi,j(b)éai log” € + o(1) (2.7)

1=0 7=0

exists. Then the corresponding finite-part integral may be defined as follows:

b b
FP/ / flz1,29)dardey = Iro(b), when ay =0 (2.8)
o Jo
= 0 when o; #0 for all 1.

(This is the unique term in the summation tat is independent of e.)

Remark 2.1 Other definitions are possible. One more general definition uses two inde-
pendent parameters, say, €; and €3, as lower limits in (2.7) together with a correspondingly
more sophisticated expansion. This can lead to different results in some cases (see remark
2.2); however, the results in this paper would be unaffected by this change. The choice
€1 = €3 = € used here corresponds to a standard one adopted in hypersingular boundary
integral equations where f is of form (1.1) with oy = ap = 0 and p = 2.

To our knowledge, until now, definitions of finite-part integrals have been given only
with reference of integrand functions of type (1.1) with oy = ez = 0, that is, with a hyper-
singularity at the origin but otherwise regular (see [ScWe92]). In that case an expansion of
form (2.7) may be obtained by taking out a circular or square neighborhood of the origin
of “size” €. In our definition, in order to allow line singularities along z; = 0 and 25 = 0,
we delete also a neighborhood of these lines. This strategy has the added advantage that
we may readily exploit one-dimensional results about the Mellin transform. Nevertheless,
it is not difficult to verify that when we have only a point singularity, that is, in (1.1) we
have c; = g = 0, our definition generally coincides with the standard one that takes out a
square neighborhood of the origin. The reason is that, unless p = —2, the two extra strips
we delete do not contribute to the finite-part value. When p = —2, our transform may be
obtained from the one with the square cut by subtracting the quantity

/loo </01 rp(w,y)dy) dac_|_/01 (/IOO rp($7y)d$) dy, p=—2. (2.9)

We now confine our attention to the finite-part integral
o0 o0
Ig; a1, 3] =: FP/ / g(x1, w)a 2y dwydes, (2.10)
o Jo

where g(z1, z2) is integrable over ([0, 00)?). Clearly, when o +1 and ay+1 are both positive,
this is a regular integral and coincides with a Mellin transform (see definition (2.1)):

I[g; a1, 3] = M[g; a1 + 1, g + 1], o > —1. (2.11)



In fact, when g(z1, z9) is an allowable function in C'(")([0, 00)?) with n > 0, this relation is
valid for many other choices of oy and a4, as specified in the theorem 2.3. The rest of this
subsection is devoted to establishing this somewhat pedestrian theorem in a straightforward
manner; to this end we need the next two theorems.

Theorem 2.1 Let g(x1,22) be an allowable function in C'(”)([O,oo)z)7 n > 0,; let neither
oy nor ag be a negative integer, and let i and j be nonnegative integers such that both oy +1
and oy + 7 exceed -1. Then

/ / g($17 $2)$?1$g2d$1d$2 = T171 + TQJ(G) + TLQ(G) + T272(€)7 (212)
where 1)+
1 ¢ ]041'042 / / + +
T = Ny, 2g)a T2y Idzyda 2.13
1,1 (Oél—l—l 'p Oéz—l—] 1 2) 1 1632 ( )
and

Tpa(e) = M Uza(e);  Tiale) = Ura(e);  Trale) = M F2Uz(e),
U n(€) being convergent power series in c.
The FP integral of (2.12) is the constant coefficient of € on the right of this equation. This

is T 1 provided aq and «y are chosen so the other terms contain no constant terms. This
leads to the following theorem.

Theorem 2.2 When none of ay, az, a1 + o are nonpositive integers and when g(xy,x3) is
an allowable function in C([0,00)?), n > 0,

FP/ / g(zy, xo)a  z5?dayday = (2.14)
(=)™ aylay! i o
T e e e, 219

for all nonnegative integers 1 and j.

Naturally, the latter finite-part integral is regular when both a; 4+ ¢ and ay + 7 exceed -1.
Theorem 2.3 is readily established from this equation and (2.6 ) by choosing ¢ and j so that
the finite-part integral is regular, setting p; = a; + 1, and applying (2.11).

Theorem 2.3 When none of ay, o, a1 + ay are nonpositive integers, and when g(x1, x2)
is an allowable function in C([0,00)2), n >0, .

FP/ / g(z1, x2)a 23 derdag = gy aq, az) = Mgy o0 + 1, a3 + 1] (2.16)
Remark 2.2. If one were to adopt the more general definition of the finite part inte-

gral mentioned in Remark 2.1 above, one would recover theorems 2.2 and 2.3 without the
restriction on oy + as.



2.3 Full Corner Singularity with Neutraliser Function

The general theory above requires that the integrand function take the form g(zq, z2)27" 252,

where g(z1,23) is an allowable function in C"([0,00)?) for some finite n > 1. As written,
our full corner singularity (1.1), namely 27'252r,(21, 2z2), may fail on two counts. First,
many choices of the parameters do not produce suflicient decay for large values of z;. Second,
the homogeneous function in general introduces a singularity at the origin that gives rise
to a nonintegrable function in a subsequent integration. In this subsection, we address
both counts by introducing a specially constructed two-dimensional neutralizer function
N (z1,22), which we-define in terms of one dimensional neutralizer functions in such a way
that fN coincides with the full corner singularity f in [0,1)% and may be expressed as the
sum of two independent acceptable functions.

Definition 2.3 A neutralizer function v(z, k1, k2) is a C™ function of x, defined for all
real arguments satisfying k1 < ko, that satisfies

v(z, ki ky) = 1 Jor v <k,
= 0 Jor x > ko.

Where no confusion is likely to arise, we abbreviate v(z, ki, k2) as v(z).
We now specify a neutralizer function

v(z) =v(x, k1, ka) with 1 < ky < k.
and construct a two dimensional neutraliser function
W($17$2) :7($17k17k2)7($27k17k2) (217)

in terms of which we may define

Fzq,29) = 27 25%r (21, 22) N (21, 22). (2.18)

This function is inconvenient to use when p#£0 because certain integrals that appear later
do not converge. To continue, we need a second one-dimensional neutralizer function

vo(z) = vo(z, kg, ko), with kg > 1.
It follows from the definition that, when kg > 1, the function
vo(z) = o(z, kgt ko) = 1 — vo(a™ kgt ko) (2.19)

is also a neutralizer function. It is notationally convenient to choose vy so that vg(z) =
vo(z).

For reasons we discuss later, we express f(z1,23) as the sum of two functions, one of
which is zero in a sector including the xj-axis and the other is zero in a sector including
the z9-axis. To this end, we define a two-dimensional neutralizer function



L - —
N($17$2) = 1 <$—17k017k0) I/($27l€17k2) (220)
2

+ |:1—I/0 <ﬂ7k517k0):| 7($17k17k2) (221)
T2
= NW(ay, 2y) + NP2y, 2y). (2.22)

One may verify that N(zy1,z3) = 1 for all (z1,22) € [0,1]? that N(z1,22) = 0 when either
x1 or x9 exceeds koko, and that N € C(Oo)[(),OO)?. This is a two-dimensional neutralizer
function.

We now reintroduce our full corner singularity (1.1) as the function

flar, xg) = a ay?r, (2, 22) N (21, 22). (2.23)

Here, r,(z1, z2) is homogeneous about the origin of degree p and has no singularity in the
first quadrant other than possibly at the origin. Because of however, this singularity, this
function has a nonallowable component. We overcome this difficulty by expressing f as the
sum of two parts, each of which is separately acceptable. These are

fil(zy,29) = a9 aS?r (y, 2) N2y 29),  i=1,2. (2.24)
Since r, is homogeneous, we have by definition
rp(Azy, Azg) = Ary(21, 22), VA >0, (2.25)
and we may reexpress r, in various ways including

T‘p($17$2) = wgrp(xl/x%l) (226)
= air, (1, 22/21). (2.27)

Clearly, integral representation (2.1) may be synthesized; thus

M(f?Phpz) = M(f[l]mhpz) + M(f[2]§p17p2)7 (2-28)
where

Wy, 2g) = 2912520 (g fag, YN (2, 2) (2.29)
and

FB g, 2g) = a0 P ag2r, (1, 2o /2 )N 2y, 24). (2.30)

We note that f[l](acl,wg) and f[z]($17$2) become zero when z{ > kozy and z7 < kizg,
respectively. Taking this into account, one can readily show that r,(z1/z2, 1)N[1](961, z3)
and r,(1, xo/21) NP (21, 29) are allowable functions. Thus both fI and f2 are acceptable
functions.

Applying in turn several results in this section, we readily establish the following theo-
rem.

10



Theorem 2.4 When f(z1,29) = 2] 25%r, (21, 22) N (21, 22) and none of oy, ag, ay+p, as+
p, and oy + ag + p are negative integers,

FP/ / (1, z2)dzdzy = M(f;1,1). (2.31)

Note: this extends the result in Theorem 2.3 so as to include the generally nonallowable
function g(zy, x3) = r (21, 22) N (21, 22).

Proof. We treat the component fI'l. In view of definition (2.29) we have

FP/ / f $17$2 d$1d$2 FP/ / al ozg—l—p $17$2)d$1d$27 (232)

where

glz1,29) = 1p(1 /22, 1)]\7[1](3617 T3) (2.33)

is an allowable function. In view of this, so long as none of oy, g + p, and oy 4+ ag + p are
negative integers, we may apply theorem 2.3 to express this integral as a Mellin transform
Ml[g;oq + 1, 0 + p + 1]; this coincides with M1, 1].

Treating the component f12 in an analogous way and combining the results for the two
individual components, we obtain (2.32), establishing the theorem. O

The idea of the partition of f, which is not acceptable, into the two functions fI 4 f[2
each of which is acceptable, is of key importance. This was first used by Verlinden for
regular integrals.

2.4 Development of M[f!!:p,, p,]

We next examine the behavior of these individual Mellin transforms in their domain of
analyticity. We treat in detail only the first integrand; to reduce this, we change variables
in the corresponding Mellin transform (2.1) using

y1 = 961/902§ Y2 = T2. (2-34)

(this is a Duffy Transformation.) To effect this coordinate transformation (2.34), we apply
part (a) of lemma 2.1 to the function fM1in (2.29). This gives M (fI; py, po) = M (¢; p1, p1+
p2) with

¢(ylvy2) = f[l](ylyz,yg) = (ylyz) y§2+p7’p(917 1)N[1](91927y2)
yfly§1+a2+pf‘p(917 Dvo(y1)7(y2)-

Since ¢ turns out to be a product function, we may apply part (c) of the same lemma,
giving the first part of the following theorem.

Theorem 2.5 For the functions f1Y and 1 defined by (2.29) and (2.30), respectively, we
have

M(fMprpa) = Mty (8, Dvo(t), p) M (124 D(1), pr + pa)
M(fBliprpa) = Mi(t%2r,(1,6)i0(1), p2) My (12 T2 05 (1), py + pa).
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The second part of this theorem may be established in precisely the same way.

this factorization of the two-dimensional Mellin Transform into the product of two one-
dimensional Mellin Transforms leads to major simplification in the subsequent development
of the theory. It is a direct consequence of the particular form (2.20) of the two-dimensional
neutralizer function N (z1,z3). Other equally valid forms, some simpler, do not lead to this
factorization.

To establish the asymptotic expansions in the next two sections, we require expressions
for the poles and residues of these functions. To this end we apply theorem 1.1 of the
preceding section to the individual factors. Since for all our one-dimensional neutralizer
functions we have v(0) = 1 and ¥(")(0) = 0 for all n > 0, this theorem leads to the following
two lemmas.

Lemma 2.2 M (t*'r,(t,1)vo(t), p1) has a sequence of simple poles located at

P1 = —a1 — Ny, n1 :0717...7 (235)
with residues rf)nl’o)(O7 1)/nq! respectively. The corresponding Laurent expansion is
r(n’o)(O 1) e [ee 1 ;
M (7, (1, Dolt), —a—nte) = 2—2 2 3~ 5 7£ (L D) g (1) log? ¢ dt. (2.36)
en! =t Jo

Lemma 2.3 M, ("7 (t, ki1, k), p) has only one pole. This is a simple pole located at p = —v
with residue 1.

In fact there is a simple expression for this transform. When p > —+, we may use the
standard integral representation (1.5) . Remembering that 7(t) = 1 for t < ky and 7(¢) =0
for t > ko, we find

P+
_ kl

k
MO, r, ko), p) o RO (2.37)
k

1

pty

Analytic continuation extends this result to all p # —~.
Since k1 > 1, the Laurent expansion about this pole is

1 ko )
M(E Dt b ha) =7+ €) = — + /1 V5t b, o) log? £ d. (2.38)

Note that the location of the poles and their residues do not depend on the details of the
neutraliser functions.

3 Two-Dimensional Error Expansion

After these preliminaries, we find an expansion for the double infinite sum

Sm(ﬁhﬁz)f[l] — % Z Z f[l] (]1 +ﬁ17j2 ‘I’ﬁ?) ) (31)

! , m m
J1=072=0
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When this sum converges, it is clearly a discretization of the regular integral

Mt = [ [ e e deades (32)

Applying the two-dimensional Mellin inversion formula (2.2) to the function f[1in (3.1)
and simplifying by using the standard expansion (1.8) of the Riemann zeta function, we
obtain a contour integral representation of the trapezoidal rule sum (3.1) of the form

(ﬁlv ﬁQ

c1+100 C2+zoo
@) / ' / SO o1, p2)C (1, B)C(p2y Bo)mP P2 2dprdpy. (3.3)
777/ c1—100 J ey —100

We remark, at this stage, that this integrand has a pole (due to the zeta functions)
at p1 = po = 1. This pole has residue M(f[l]; 1,1) that is, in some cases, precisely the
integral (3.2) to which the discretization (3.1) may converge. This circumstance motivates
the rest of this paper. It suggests that, by moving the contours in (3.3), we may isolate the
exact integral, leaving a remainder term. In this section, we put this suggestion on a proper
mathematical footing. We find that, in many cases, other residues of the integrand function
in (3.3) correspond to other terms in the Euler-Maclaurin expansion and, appropriately, in
generalizations of this expansion.

In (3.3) the integration paths are along Re(p1) = ¢1 and Re(py) = ca, respectively;
and ¢; and ¢y are real numbers for which M(f[l];cl,CQ) is given by its standard integral
representation of form (2.1). This implies that all poles of ZM(f[l];pl,pg)7 as a function
of p1 with p; fixed and of py, with p; fixed, are on the left of the lines Re(p;) = ¢1 and
Re(pz) = ¢ respectively. The locations of these poles (for both W and f[2]) can be obtained
from lemmas 2.2 and 2.3. We find these parameters need to satisfy

¢, 0 > 15 > —ag; cy > —ag; 1+ ce > —(a1 +ag + p). (3.4)

To obtain an expansion, we employ precisely the technique used in [Moly98], section 4,
in a one-dimensional context to establish theorem 1.2. Here, we keep ¢y fixed and treat pq
as an incidental parameter; we identify the poles of the integrand function in (3.3) in the
po plane. There are only two. The zeta function has a simple pole with residue 1 located at
p2 = 1. And, in lemma 2.3, we noted that the second factor in the Mellin transform has a
simple pole at p; = —(p1 + a1 + a2 + p), again with residue 1. We move the second contour
to the left, passing over both these poles, including, in each case, a term that comprises the
residue of the integrand function at that pole. Choosing ¢, < min(1, —(p1 + a1 + a2 + p)),
we find

1 co+100 [1] 1
_/ M(f §P17P2)C(P2752)mp2 dpy =

278 Jey—ico
C(=(a1 4+ az + p+p1), B2) My (t*1r,(t, L)vo(t), p1)
mlertaz+p+pi)+1

MM py, 1)+ (3.5)

1 CoF1200
-I-—./ ’ M(f[1]§P17P2)C(P27ﬁz)mm_ldpz-

27 ! —ico
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Naturally, the derivation above is invalid when py is a pole of M(f[l];pl,pg). Each term
n (3.5) is an analytic function of p;, however, and this fact is exploited below.
Substituting (3.5) into (3.3) gives

1 c1+ic0 B
57 Bl M = S [ MU D¢, B dpy (3.6)
1 —100
1 featio C(=(ar +ag + p+p1), Bo) My (t 11, (L, o (t), p1)
%/cl—ioo C(plvﬁl) ma1toz+pt2 dpl
1 c1+100 c2—|—zoo pye2
-I-W/ ' / T p1, p2)C(pr, B)C (P2, B2)mP P22 dpy dp,.
€1 —100 c2—zoo

We note that in the second integrand the part depending on m has turned out to be indepen-
dent of p; and therefore may be taken outside the integral. This simplifying phenomenon
allows us to set

1 c1+100
A = / Cpr; P)C(—= (4 aa 4 p + pr); Bo) M (8%1r (8, 1) wo(t), pr)dpy,

27 J oy —ico
(3.7)
and (3.6) reduces to an expansion of the form
m ] L g pi-1
S" (B B) = %/ MY py, D) (pes By)m™ T dpy (3.8)
1 —100
(1,0]
a1tan+p+2
mortas+p+2
1 c1+100 c2—|—zoo I
+ ~2/ . / P17P2)C(P1§51)C(P2§ﬁz)mpl P22 dp1dp,.
(27‘-2) C1 —100 C2—ZOO

We treat the first term on the right in (3.8). We move the integration contour Re p; = ¢4
to the left to a new location Re p; = ¢} < ¢1. In doing so, we have to addend the residue R;
of every pole P; of the integrand function ®! (p1) =: ZM(f[l];pl7 )¢ (py; B1)mPr~1, which, as
a result of the transfer, now appears to the right of the contour. Thus

c1+oo
L/ MMy, )¢ (py, Brym? " dpy = (3.9)

27 J oy —ico

1 ¢! +ico
> er-—/ 1 MM py, DCpr, Br)ym™ L dpy.

27 _;
P1>C/1 C 100

To proceed, we need to locate these poles and find expressions for their residues. In
view of theorem 2.5, this integrand function may be written in the form

M (py) = M, (%, (1, wo(t), p1) My (12 F2 2 5(8), py 4+ 1)C(py; Br)mPr L. (3.10)

The zeta function has a simple pole with residue 1 at
p=p =1. (3.11)
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the individual Mellin Transforms in this integrand have been treated in lemmas 2.3 and 2.2.
The first Mellin Transform has a sequence of simple poles at

(1)

p=p; (m)=—-0q—n1, n7=0,1,..., (3.12)
with residues rﬁ”l’o)(o, 1) /nq! respectively, while the second has a simple pole with residue
1 at

2
pr=p" = (a1 +az+p+1). (3.13)

The poles of each of the three factors of the integrand function (3.10) are simple poles.
A pole of one factor may, however, coincide with a pole of another factor, giving rise to a
multiple pole of ®U (p1). This depends on the values of the parameters aq, ay and p. The
expression for the residue R; depends on the multiplicity of the pole F;.

Definition 3.1 The set of parameters ay, g and p are termed generic when all the poles
of ®M are simple and all the poles of ®2 are simple.

Here ®[2! is the integrand function in (3.10) when 12 is treated in place of flIl. We note
that a pole of ®1) may coincide with a pole of ®2. In several important cases, there are
multiple poles. We discuss these nongeneric cases briefly in section 7.

4 The Two-Dimensional Error Expansion in the Generic Case

So long as the locations of all the poles pgj) given in (3.11), (3.12), and (3.13) are distinct, the
poles P; of the integrand function ®1 are simple. This fact, together with the corresponding
remark concerning ®2, allows us to state a sufficient condition for a generic case.

Theorem 4.1 When none of the following five conditions are satisfied, a generic case oc-
curs.

(1) ar+ag+p=-2
(2) az + p + 2 = positive integer = my.

(3) oy = negative integer = —msy.
(4) oy + p+ 2 = positive integer = m}.
(5) ag = negative integer = —m,.

Proof. The reader may verify that the first of these five conditions reflects the coincidence

(0) (2)

of poles at p;”’ and p;”’ above. The second and third conditions reflect the coincidence of
one of the poles pgn) with p(lo) and with pgz), respectively. The fourth and fifth conditions

arise from a corresponding treatment of f2l. O

We note that generic cases do occur, even when one or more of these conditions pertain.
Such an occurrence arises when one of the simple poles listed above disappears as a result
of a particular choice of parameters. The symptom is that the residue vanishes. (For
example, when a; = ay = p/2 = 0, the poles p(ll)(nl) = —ay — ny disappear, except when
n1 = 0. None of the remaining poles coincide. This is a generic case, items (2) and (4)
notwithstanding.)
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(1)

We have given above the residues at p;’ of the individual components of the integrand
function. We need the residues of the complete integrand function. In this generic case, the
residue of the integrand function (3.10) at p; = p(lo) = 1 is simply M;(t*'r, (¢, )ro(t), 1)X
My (tor+o2Hrp (), 2), which, in view of (2.35), reduces to M (fI1:1,1).

The other residues are calculated in the standard way for simple poles. Collecting these
terms, we find the specialization of (3.9) in the generic case to be

1 c1+oo
2—/ MMy, Dy ByymP T dpy = (4.1)
TV Jeg—too
ol [1,1] 1,2]
MWL+ S0 Al ettt g2 pentastot2
711:0
1 c'l—l—ioo
—I_%// . M(f[1]§p171)C(P17ﬁ1)mpl_ldp1,
Cl—ZOO
where
1
A[ofiﬂnl-l—l = n_llrf)m,O)(O7 1)Mt(ta1+a2+pi(t); —op — 1y + 1)((—a1 — ny, B1), (4.2)

Al = M Do) —an — g — p— D((—an —an —p—1,41).  (4.3)

Substituting the right-hand side of (4.1) into (3.8), we obtain

Z[I]Jr ey W Al
m 1 _ 1]. a1+to B
S™ (B B 1 = ML)+ SRR 2 ettt (4.4)
n1=
1 ey +ico i
‘|‘%// . M(f[l];p171)C(p17ﬁ1)mp1 1dp1
cq—100
1 c1tico  peytico [1] p1+p2—2
+W/ : / MY pr, p2)C(pas B (po; Bo)m I
€1 =100 JCy—100
with .
A 1,0 1,2
Ae = A0+ AV (4.5)

Here, M (f0;1,1) is the (double) analytic continuation of (3.2) with f = fl(zy,z9). If no
continuation is necessary,

Mt = [ [ e e deades (16

Naturally, the sufficient conditions in theorem 4.1 for this to be a generic case coincide
with the condition that each term in the expansion (4.4) involves a distinct power of m.
Further examination of the coefficients reveals that, when the conditions of that theorem are
violated, and two terms appear having the same power of m, the expressions as written for
the coefficients may become indeterminate. For example, when condition (3) is violated, and
aq is the negative integer —msg, the zeta function in (4.2) is indeterminate when ny; = mgp—1.

(n1 70)

However, if that particular term does not occur, for example when 7}, = 0, the expansion
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is not affected. This fact reconfirms that condition (3) is only a sufficient condition for a
nongeneric case and not a necessary one.

Condition (1) of the theorem can be connected with the zeta function factor in (4.3) in
the same way, while condition (2) is related to a pole of the Mellin transform factor in the
same equation.

In the nongeneric cases one or more of these conditions are violated. The consequent
modifications to the expansions required are treated briefly in section xx7xx.

At this point, we have available in (4.4) an expansion of the required form for 5™ (1, ﬁg)f[l]
where

M@y, 20) = 29252, (21, o) NM (21, 29). (4.7)

This function coincides with f(z1,22) in a region adjacent to the zp-axis but tapers away
and coincides with zero in a region adjacent to the z-axis.
To obtain S™ (81, #2) f, we require the corresponding expansion for

f[z](acl, ro) = ity r, (2, xg)N[z](xl, T3).

The calculation of S™ (81, 32) f12 corresponds in every respect to that of S™ (8, 32) fl1] as
described above.
The major result of this paper is the following.

Theorem 4.2 Let oy, a0 and p be a generic set of parameters, as specified in definition
3.1. Let S™(f1,P2)f be the offset trapeziodal rule approximation (3.1) to the full corner
singularity function f(x1, %) = a7 23%r, (21, 22) N (21, 22) as given in (2.23). Then there

exists an asymptotic expansion of the form

AL a2 ALY AR

m _ . ar1taz+p ni+o na4a

S (ﬁlv ﬁ?)f - M(f7 17 1) + me1taz+pt2 + ZO mn11_|_a11_|_1 + ZO mn22_|_a22_|_1 . (48)
ny= n2=

Here, we have set
M(f;1,1) = M1 0+ M (2 1,1)

and

0 —[1] —[2] 1,0 1,2 2,0 2,2
ARy = A + A, = AU+ A+ Al 4 A (4.9)

(Coefficients having superscript 1 are defined explicitly in (4.5),(3.7),(4.2), and (4.3).) As
mentioned above, in the conventional case, the integral is regular and

f7 1 1 / / $17 $2 d$1d$2 (410)
In general, when this does not exist, it is the analytic continuation of
° 1 1
M(f;p1,p2) / / fler, 20)a' ™ ah? ™ dayda (4.11)
to py = p2 = 1. Since this is the generic case in which this meromorphic function has

no poles at p; = 1 or p; = 1, the integral (4.11) does exist for some p; and pz, and its
continuation coincides with our definition of the Hadamard finite-part integral. Note that,
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in view of theorem 2.3, there need be no relation of this kind if any one of o, ag and oy +an
is a nonpositive integer.

Remark 4.1. When «a; (and/or a3) is a nonnegative integer, the term 27" (and or z3?)
plays no significant independent role in the theory, which can be rearranged to omit these
factors with a consequent simplification. (In fact, with no loss in generality we can restrict
the theory to the case a; # nonnegative integer.) No such simplification occurs in general for
special values of p. For example, a possible integrand is arctan(zy/x2), which is the function
rp(21,22) with p =0 and certainly gives rise to a corresponding term in the expansion.

Remark 4.2. Examination of the contour integral representation (3.7) of A[Wl_i_OQ] shows

that the integrand function has a pole at py = —1 — + whose residue turns out to be

precisely —A[WI_E_ZQ] as defined in (4.3). This implies that Z[Wl_]l_z in (4.5) has a contour integral
representation having this same integrand, but a different contour. Thus

4 1 N
A[oz}+oz2-|—p-|—2 = %/51 Clp1: BL)C(— (a1 +aa+p+p1); B2) My (71, (t, D vo(t), pr)dpr, (4.12)

where C is a modification of the contour Re(p) = ¢;; this modified contour passes to the
left of the pole at p = —1 — 7 but to the right of all the other poles. When a7 > —1 and
v+ 2> 0, the contour C'y may be taken to be the line Re(p;) = 1, indented to pass to the
right of the pole at p; = 1.

5 The Form of Related Expansions

Up to this point, the theory has been devoted to the asymptotic expansion of the trapezoidal
rule sum approximation S™(f, f2)f (introduced in (3.1)) of the basic integrand function

flar, x2) = af a3 r,(21, 22) N (21, 22) (5.1)

over the first quadrant [0,00)?. In this section we deal with the form of the corresponding
expansions when the integration region is replaced by [0, 1)* and when the integrand function
is generalized to fg with g regular in the integration region. We provide a simple framework
for handling the somewhat tedious extensions to the theory required to obtain these variant
expansions.

We denote various integration regions as follows:

Fop = [0, 1)2; H,,=[p o0) X [g,o0); p,g=0,1;. (5.2)
Specifically
Ho,o = [0700)2; H0,1 = [0700) X [1700)§ Hl,o = [1700) X [0700)§ Hl,l = [1700)2-

We suppress dependence on ; and 33 and denote by S™(Hg ) f the quantity S™ (51, 82) f
defined in (3.1). The corresponding trapezoidal rule approximations to the regions specified
above are denoted by

sm(Hp,q)f=% > f(j1+ﬂ17j2+ﬂ2)7 pg=0,1. (5.3)

. . m m
Ji=mp j2=mq
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The sum over Fop can be expressed as
S™(Hop)f =S™(Hoo)f — S™(Hop)f — S™(Hio)f+ S"(Hia)/f, (5.4)

and the expansion for Hog may be obtained as the sum of the four expansions, a different
one for each region. The appropriate expansion in these different regions may differ from
one another, depending on the extent (if any) to which the singularities of f penetrate that
region.

In none of the theory or examples treated in this paper are there any integrand singu-
larities in H 1, and the integral exists. Thus the standard Euler Maclaurin expansion may
be applied.

The result of carrying out this process for the full singularity of theorem 4.2, namely,

flzy, o) = 27 252r (21, 22) N (21, 22), (5.5)

is an asymptotic expansion including exclusively terms of the form A,/m”, where v may
take any value specified in items (1), (2), (3), and (4) of theorem 5.1, together with v =
o +ox+p+ 2.

In the application to numerical quadrature, however, one needs an expansion for the
more general function fg where g(z1,22) is a regular function. The standard approach is
straightforward. One expands g(z1,22) as a Taylor expansion and applies corresponding
results for each separate term and to the remainder term. The effect is to introduce for
each v already present a sequence v+ j with j = 1,2,3,... If, as in the final summation on
the right of (4.8), v already belongs to such a sequence, the form of the expansion is not
altered. On the other hand, the first term on the right of (4.8) is replaced by a sequence
(5) below.

The second major result of this paper is an umbrella result for all expansions involving
full singularities over these regions when the integrand function is generic.

Theorem 5.1 Let o, g and p be a generic set of parameters, as specified in definition 3.1.
Let S™(Hoo)fg and S™(Hoo) fg be the offset trapeziodal rule approzimation (5.4) to the
integral over [0,1)? and over [0,00)?, respectively, of fg, where f(x1,x3) is the full corner
singularity function as given in (5.5) and g(x1, x3) is a regular function. Then there exists
an asymptotic expansion for S™ fg in powers of m containing exclusively terms of the form
A /mY for some or all of the following values of ~:

(1) v=0;

(2) v =s; s=1,2,3,....

(3) 7 =ag+ 14 ng; n1

(4) v = a1+ 14 ny; 72 1,23,

(5)y=01+as+p+2+mn; n=20,1,2,3,....

0,1,2,3,....
0,1,2,3

This large number of terms in the expansion is disappointing, if not unexpected. All
expansions contain item (1), which is simply the (Hadamard finite-part) integral. The
classical Euler-Maclaurin expansion includes additionally only sequence (2). The basic
expansion (4.8) may include two sequences, however, and when g is included, this becomes
three sequences.
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6 Expressions for Individual Coefficients

6.1 The Classical Euler-Maclaurin Expansion

It is convenient to note the form of the classical Euler-Maclaurin expansion applied to
[0, 00)?, of which (4.8) is a variant.

Theorem 6.1 Let f(x1,x2) be allowable and CP[0,00)%. Let S™(B1,52)f be the off-set
trapeziodal rule approximation (3.1) to this integral. Then there exists an asymptotic ex-
pansion of the form

5™ (B ) f = M(F 1)+ 3 P 1 R, (6.1)

s=1 '

where By is independent of m and R, = O(m™7).

Here, of course, M(f;1,1) is a regular integral.

This form may be obtained from (1.2) by summing the corresponding result for the
square [K, K + 1) x [L, L 4+ 1) over all nonnegative integers K and L. We find that the
coefficients B, take the form

Bo= Y eulews(®) [ [ 14 (e, a)dordan (6.2)

k=0

In view of the high-order continuity of f, this can be reduced to

B, = —cs(ﬁl)/ FO=D (e, 0)dey — cs(ﬁQ)/ FE10 (0, eo)des  (6.3)
0 0
s—1
+ 3 er(Br)esi(B) FEH7FD(0,0).
k=1
Thus, when f(z1,2) is allowable and c®o, )2, the coefficients By (1 < s < p) depend
only on the nature of f(x1,22) on the axes ; =0 and 23 = 0.

6.2 A Simpler Neutraliser Function

This result can be used to simplify marginally some of the previous results by simplifying
the dependence on neutralizer functions. The integrand functions of sections 2 and 3 all
involved a neutralizer function N (zy,23) given in (2.20). Examination of this function
shows that it coincides with the simpler neutralizer function

Nz, 29) =D(21, k1, k)T (22, k1, k2) (6.4)
for all 0 < zy < klkal, 0 <z < klkal. Consequently, the distinct full corner singularity
functions

flag, 2g) = 27 252y (21, 22) g (21, 22) N (21, 22) (6.5)
and
Flry, ) = 20 a5 r,(xy, 22)g (21, 22) N (21, 22) (6.6)
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coincide in a strip along the axes and are by definition Coo[klkal,oo)Q. The function
(f(z1,29) — f(x1,22)) is then C°°[0,0)? and so is one to which theorem 6.1 applies, and
examination of (6.3) shows that the coefficients B; for this difference vanish. This gives
immediately the following theorem.

Theorem 6.2 Theorem 4.2 is valid as it stands when N(z1,x4) is replaced by N(z1,x2)
in the definition of f.

Naturally, S(™) f and M(f;1,1) change when N is replaced by N. The other coefficients,

however, are identical. The expressions given for A[Wj’l] are already independent of vyg.

(0)

However, the expression given for A5 includes several terms, some of which depend on .
This dependence is in fact spurious.

6.3 The Coefficient A[Wl’l], General Case

The coefficient A[all’ﬂnl_l_l is given by (4.2) which involves the neutralizer function N. In
view of theorem 6.2, we may replace N by N. This replacement allows a simple reexpression

in terms of the cofactor function of z{* in f, defined by

ha(zq,29) = 27 f(21, 22) = rp(21, 22) 252D (21)T(22). (6.7)
Lemma 6.1 The nyth derivative of this cofactor function satisfies

h(1n1,0)(07 $2) — rf)n
E)n

00, 29) 2327 (22) (6.8)
000, 1)232 " o (as). (6.9)

1
— r 1
Proof. This is straightforward. Differentiating the right-hand side of (6.7) n; times with
respect to 1 using the Leibniz expansion leaves n; + 1 terms. Since 7°(0) = 0 for all s > 0,
when we set 21 = 0, only one of these terms remains, this being the right-hand side of (6.8).
The final equation is established by noting that the factor rﬁ”l’o)(o, x3) is homogeneous in
x4 of degree p — ny and so can be reexpressed as required to establish the result. O

Minor rearrangement of (4.2) together with an application of this lemma give succes-
sively

C(—Oél - nhﬁl)
n1!

_ (- nl,ﬁl)Mt(hgmm(O’t); ). (6.11)

n1!

A[lvl]

R My (r{m0(0, 1) P~ (1) 1) (6.10)

The final term here is a regular integral when p + @y — ny > —1 Otherwise it is a
one-dimensional HFP integral, except when p + oo — ny is a negative integer.
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6.4 The Coefficient AE’I], Special Case r, =1

We treat the special case
flay,xe) = 2t as?v(x)T(22). (6.12)

Here, we may set r,(z1,22) = 1 and set p = 0 in any previously stated result. The set of
poles in (3.12) may be replaced by a single pole pgl)(O). Consequently all the terms other
than the initial term in the sums over n; and ny in (4.8) vanish, and only four individual
terms remain on the right of (4.8). The set of five sufficient conditions for a generic case

becomes simpler. The parameters are generic when all three of the following exist:
ay # —1; ay # —1; a1 4 ag # 2. (6.13)
We then have the following theorem.

Theorem 6.3 Let oy # —1 and ag # —1. Let SU (31, B3) f be the offset trapezoidal
rule approximation (3.1) to the corner singularity function (6.12). Then there exists an
asymptotic expansion of the form

(0) A[lvl] A[271]

AO( [0} [0} [0}
ST (B, B2)f = M(f11,1) + 250248 oy ook (6.14)

Here

Adh = M ) (o B AL = M ;1) (0, By). (6.15)
It is shown below that
0
A vz = (=0, B1)C (=2, ). (6.16)
This special case may be treated without resort to the coordinate transformation of section
2.3. Instead, we may exploit the circumstance that f in (6.12) is a product function, say

f = ¢1¢2. We apply theorem 1.2 to the function ¢q(z1), with g(z1) = 7(x1), to obtain for
the one-dimensional discretization (1.9)

ST (B1)ér = M(¢1,1) + ¢ (—an, 1) /m™F +O(m™7), (6.17)
valid so long as a; # 1. Since SU™ (B, Bo)d1da = S™(B1)d15™ (B2)ba, we may take the

product of two versions of asymptotic expansions (6.17), obtaining an independent proof of

(o

theorem 6.3 that provides the expression for Aa1)+a2_|_2 given above.

6.5 The Coefficient A[Wl’l], Special Case a; = a3 =0

We treat the special case

flai,22) = rp(e, 22)7(21)7(22). (6.18)

For this to be a generic case, we require that p + 2 not be a nonnegative integer, allowing
us to apply (4.8) to obtain

40
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The coefficient B, reduces to

B, = Al Al (6.20)

_ C(—S + 17 ﬁl)Mt(f(s_l’O)(O, t); 1) + szt(fo,(s—l)(t7 0); 1) (6.21)

(s —1)!
= —¢(B)FP / 7 PO (5 0)day — ca(B) FP / 7100, ) dey. (6.22)
0 0

These coefficients resemble closely the corresponding coeflicients for the regular function
given in (6.3). The only differences are that those integrals that, with the new integrand,
do not converge are changed into HE'P integrals and the final summation in (6.3) (the terms
of which in this case are either zero or indeterminate) is omitted. The reduction of form
(6.20) to one resembling (6.2) is not immediate. One requires the following lemma.

Lemma 6.2 Let f be given by (6.18), and let t1,ty and s be positive integers, and p — s
# — 2. Then

0
/U / f( S)(w ¢ ) ¢ ¢ F / f( ’ )(x ) wl' ( -24)
0 17: d 6

We omit our somewhat pedestrian proof of this elegant result.
In view of this, we may reexpress this coefficient as

S

B = ch(ﬁl)cs k ﬁg FP/ / f ks k ($17$2)d$1d$2 (625)

k=0

This is precisely the same form as the corresponding ( 6.2) except that regular integrals are
consistently replaced by HFP integrals.

The expansion (6.19) bears a close resemblance to the corresponding expansion for a
regular function described by theorem 6.1. Apart from a single additional term A /mp"'2
the only differences are those required to modify integrals that would otherwise dlverge to
HEP integrals and to remove indeterminate quantities.

6.6 Special Case a; = a; = 0, Region [0,1)?

This is treat the special case oy = g = 0 by taking the difference of the expansion for the
region [0, 00)% and the expansion for the region L[1,00). The first expansion is (6.19) with
B, given by (6.25). The second is a minor variant of (6.1) adapted to the L-shaped region.
Here By is given by (6.2), except that the integration region is the L-shaped region. The
result is the following.

Theorem 6.4 When p+ 2 is not a nonnegative integer,

40
S™(Hop)f = M(f;1,1)+ %+me (6.26)
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and the coefficient, By of m™* reduces to

S

B —ch(ﬁl)cs k ﬁg FP// fks k ($17$2)d$1d$2 (627)

k=0

Note that AEEQQ in this expansion is identical with the same coefficient in expansion (6.19).

7 The Two-Dimensional Nongeneric Expansions

In the preceding section, we developed (3.9) by finding expressions for the residues R; in
the case that all the poles P; of ®[ll (p) are simple poles. In that case expressions for the
residues are readily available, reducing (3.9) to (4.1) with accompanying expressions for the
coeflicients. These terms, together with terms arising from a corresponding development of
f21 appear in the final theorem 4.2.

In a nongeneric case, some of the poles F; are not simple; for these, a different residue
calculation is required.

If we treat only fI, to obtain a nongeneric case, two or more of the poles pg]) given in
(3.11), (3.12), and (3 13 must coincide. This situation can happen in relatively few ways:

)
(1) p® = p2 (nl) for some nonnegative integer 7y
(2) p© = ( (1 (n) for all nonnegative integers n
(3) p = p( ( ) * p(2 for some nonnegative integer 73
(4) p® = pMW(7y) # p© for some nonnegative integer 7y
Case (1) is a triple pole. In this case all other poles of ] are simple.
Case (2) is a double pole. In this case all other poles of ®ll are simple.
Cases (3) and (4) are also double poles. They may both occur in the same expansion

with 73 # T4, or possibly only one may occur. In either situation, all other poles of ol are
simple.
We note that p(® = 1. This pole gives rise to the term M[f[l]; 1,1] in the expansion.
In all these cases, the form of the expansion can be readily obtained. The integrand
function (3.10) is of the form ®M(p) = G'(p)m?~", where G(p) contains the poles at p = Pi.
Since there is no pole of G/(p) of order higher than 3, the Laurent expansion of G(p) about
any pole P can be written in the form

Gp)=c3(p—P) P +ca(p—P) *+ci(p—P) " +co+.... (7.1)

When P is a double pole, c_3 = 0. When P is a simple pole, ¢c_3 = ¢_3 = 0. The factor of
ol (p) involving m may be expanded in the form

P=Yeap((p—P)logm) = m" = (14 (p— P)logm+((p— P)logm)?/2+....). (7.2)

mP~t =m

The residue of ®!] (p) = G(p)mP~" at the pole p = P is simply the coefficient of (p — P)~1
in the product of these two expansions. This is

R = (c_3(logm)?/2 + c_y(logm) + c_y)/m*~T. (7.3)

Naturally, the principal theorem of the preceding section, theorem 4.2, requires mod-
ification before it may be applied to these nongeneric cases. This modification is minor,
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however. When P is a double pole of ®!! (p), two of its factors have poles at p = P. If the
residues are mistakenly calculated on the basis of this being a simple pole, the result contains
an indeterminate factor. Thus, in the expansion (4.8) of that theorem as written, when P is
in fact a double pole, the two terms of the form A;_p/m!'~F are both indeterminate. The
proper residue to use in this case is of the form (7.3) with c_3 = 0; the two indeterminate
terms should be replaced by a two-parameter term of the form (C_plogm + Dl_p)/ml_P.

In the triple pole case, which occurs only when P = 1, one replaces three terms, each
apparently constants in the expansion, by a three-parameter term of form

R = C{(logm)* + Colog m + Dy. (7.4)

The derivation given above refers only to the terms in the final expansion arising from
the component fOl. A similar treatment of f[2! is also required. This gives results of a
precisely corresponding nature.

Thus it is straightforward to write down the form of the expansion in nongeneric cases.
But formulas for the coefficients are cumbersome. The principal application is to numerical
quadrature by extrapolation. There, expressions for the coefficients are needed only when
the value of the integral is involved. In the generic case, this is the constant coeflicient

M(f;1,1). In cases where there is a multiple pole at p = 1, we now have terms as in (7.4)
with P = 1.

8 Concluding Remarks

We are interested in integration over [0, 1)? and [0, 00)?. We have treated integrand functions
having a full corner singularity. These are of the form

flar, xg) = aftay?r, (21, 22)G (21, 22), (8.1)

where r, is homogeneous of degree p (see (2.25)) and has no singularity in [0, 1)* other than
at (0,0), where G/(z1, x5) is C(*)[0,00)? and where f is acceptable, that is, its decay rate
for large @1, x5 is sufficient for the integral to converge there.

The overall result is this. For all values of the parameters ay, as and p there exists an
asymptotic expansion of the offset trapezoidal rule of the form

S(m)f = Z(A%' + ., logm + D, (log m)z)/m%- (8.2)
=0
Here, the elements ~; are distinct; only a finite number are nonpositive. For convenience
we take 7; in increasing order. In cases in which the integral converges (that is, aq + ag +
p > —2), this result can be gleaned from several papers [Ly76],[LydD93],[VeHa93]. In this
case v; >0, Ag = If, and Dy = Cy = 0.
The focus of our investigation has been on cases in which the integral does not converge.
In the development of the theory, it became necessary to evaluate the residues at the poles
of a function that depends on the parameters. In the cases in which all poles are simple,
we have termed the set of parameters generic.
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In generic cases, Cy, = D,, = 0 for all 7;, and Ag = I f, where I f is the Hadamard finite
part integral. The expansion reduces to

SF=SNTA Y F I+ AL m (8.3)

7i<0 vi>0

the required values of v; are given in Theorem xx5.1xx. The first summation is finite,
including only the negative values of v (that is, positive powers of m). In the extrapolation
context in the hypersingular cases, one seeks the constant term [ f, which is not the leading
term. A list of conditions on the parameters that ensure a generic case is given in theorem
xx4.1xx; however, these are only sufficient conditions. A generic case may occur, even if
some of these conditions are violated. It is quite permissible to treat, in the first instance,
a generic case as if it were nongeneric. One simply lengthens the calculation by introducing
additional terms unnecessarily.

In the nongeneric cases, in which coefficients Cy and Dy exist, the integral is not given
by Ag. In the corresponding one-dimensional case [Ly94], it is possible to extract I f from
the values of Ay and Cy. In the two-dimensional case, expressions for Ag, Cp, and Dy are
much more complicated. At present, we have no evidence to the effect that one can extract
If from these. This is under investigation.
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